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Introduction

Merge Sortis an important comparison-based sorting algorithm that works on the divide and conquer
principle. It divides the input array into two halves, sorts each half recursively, and finally merges the
sorted halves to produce a fully sorted array. With a time complexity of O(nlogn) Merge Sort is known
for its efficiency which makes it significantly faster than other sorting algorithms like Bubble Sort or
Insertion Sort, especially as the size of the dataset grows.

The main objective of this project is to perform a comparative performance analysis of the Merge Sort
algorithm using four different implementations. By implementing these variants in Python and
running them on datasets of various types and sizes, this study evaluates their performance under
different conditions. Key performance metrics, including execution time and memory usage, are
analyzed to determine how each implementation handles diverse data structures and sizes. The
analysis ultimately provides insights into best practices for implementing Merge Sort in specific
scenarios, such as when memory usage is a key constraint or when the data is already sorted.

Methodology

The four variants of Merge Sort were implemented in Python based on pseudocode provided in
Neapolitan et al. (2015) The implementation process involved translating the different Merge Sort
variations written in C++ into Python syntax and ensuring that each function correctly performed the
core operations of dividing, sorting, and merging subarrays

To evaluate the performance of these implementations under various conditions, datasets of different
structures and sizes were generated. Four types of data were used for testing which were random,
sorted, almost sorted and reversely sorted data. These different configurations provided a robust
foundation for analyzing the performance and adaptability of each Merge Sort variant.

Implementation of Merge Sort Variants

The four different implementations used in this analysis have distinct properties, which will be
explained in greater detail below.

Mergesort 1 (Recursive)

Mergesort1 is a classic recursive implementation of the Merge Sort algorithm that follows the divide-
and-conquer approach. The array is repeatedly divided into smaller halves until each subarray
contains only one element. Then, a merge function combines these smaller arrays in sorted order.
This implementation uses temporary storage during merging, which helps maintain stability,
meaning equal elements retain their original order. The pseudocode for Mergesortl1 is provided in
Appendix A/1.

Mergesort 2 (Modified Recursive)

Mergesort2 is another recursive implementation of Merge Sort, similar to Mergesortl. The main
difference lies in how it handles the boundaries of the array during recursion, using explicit index
management to split and merge the subarrays. While the underlying logic is the same as Mergesort1,
this approach introduces minor variations that could affect performance in some cases. Temporary
storage is also used in the merge step, preserving the algorithm'’s stability. The pseudocode for
Mergesort2 can be found in Appendix A/2.

Mergesort 3 (Iterative Version)

Mergesort3 is an iterative, bottom-up version of Merge Sort. Instead of using recursion, it starts with
individual elements as sorted subarrays of size 1. The algorithm then repeatedly doubles the subarray
size and merges them until the entire array is sorted. This method avoids the need for recursive calls,



making it more efficient in environments where recursion depth is limited. It also provides better
control over memory usage. The pseudocode for Mergesort3 is available in Appendix A/3.
Mergesort 4 (Linked List Version)

Mergesort4 is specifically designed to work with linked lists instead of arrays. It splits the linked list
into two halves, sorts each half, and merges them back together using pointer manipulation. This
approach is especially useful for linked lists because it avoids the need to shift elements during the
merging step. Mergesort4 is stable and performs well when working with data stored in linked
structures. The pseudocode for Mergesort4 is included in Appendix A/4.

Correctness Testing

To ensure that each Merge Sort variant produced correctly sorted output, a correctness test was
conducted on a small dataset of 10 randomly generated integers. Each algorithm was applied to the
dataset, and the output (Appendix B) was manually verified by comparing the sorted result against
Python’s built-in sorted function. This verification step ensured that each implementation correctly
sorted the data, establishing a foundation for subsequent performance testing on larger datasets. The
verification test also served as a quick check to ensure no logical errors were present in the code
before moving on to more extensive analysis.

Experimental Setup

The performance tests for this project were conducted on a computer with the following
specifications: an Intel Core i7-9700K processor with 8 cores and a base clock speed of 3.6 GHz
(boosting up to 4.9 GHz), 16 GB of DDR4 RAM, and the Windows 10 (64-bit) operating system. These
specifications provided sufficient computational resources to handle datasets of varying sizes,
ensuring accurate and reliable measurements of execution time and memory usage across the
different Merge Sort implementations.

To evaluate the efficiency of each Merge Sort variant, two key performance metrics were recorded:
execution time and memory usage. Execution time was measured in milliseconds by using Python’s
time.perf_counter_ns() function. The start and end times for each sorting operation were recorded,
and the difference, initially calculated in nanoseconds, was converted to milliseconds for clarity. Each
dataset configuration was tested 100 times, and the average execution time across these runs was
computed to minimize the impact of random delays or fluctuations. Memory usage was estimated by
calculating the memory footprint of the main data structures involved in sorting. Python’s
sys.getsizeof() function was used to measure the size of primary arrays, including input arrays and
temporary arrays, to approximate memory usage in bytes. This provided a reliable method to assess
the additional memory allocation required by each implementation, reflecting the overhead
associated with the Merge Sort process.

To thoroughly evaluate the performance of each Merge Sort variant, test cases were generated with
varying data structures and sizes. The datasets used for testing included arrays of sizes 10, 100, 1,000,
10,000, 100,000, and 1,000,000. This range of sizes allowed for an analysis of how well each
implementation scaled from small to very large datasets. Furthermore, four distinct types of data
configurations were tested for each size. Random data consisted of arrays filled with randomly
generated integers, simulating typical unordered datasets. Sorted data comprised arrays already
arranged in ascending order, allowing the evaluation of how efficiently each algorithm handled pre-
sorted data. Reverse sorted data represented a worst-case scenario, with arrays arranged in
descending order, requiring the algorithms to completely reorder the elements. Finally, nearly sorted
data consisted of arrays that were mostly sorted but included a few random swaps, simulating real-
world datasets that might require minimal adjustments.



Each Merge Sort variant was applied to these configurations to observe and analyze its performance
under different conditions, providing comprehensive insights into their scalability, efficiency, and
adaptability to various data types and sizes.



Analysis and Discussion

Random Data

From Figure 1 (Execution Time Performance for Random Data), Mergesortl and Mergesort4 stand
out as the best-performing algorithms in terms of execution time, with Mergesort1 exhibiting a slight
edge for larger datasets. Mergesort2 and Mergesort3 are comparatively slower, with Mergesort3
being the least efficient for random data. These differences can be attributed to the design of each
algorithm: Mergesortl employs a simple and efficient recursive approach, while Mergesort4 uses
pointer-based operations in its linked list implementation to achieve enhanced performance. On the
other hand, Mergesort3 incurs extra computational costs due to its iterative structure, and
Mergesort2 introduces additional boundary-handling cost. All implementations conform to the
expected theoretical O(nlogn) time complexity, as illustrated by the trendlines and the R2 very close
to 1.

In Figure 2 (Memory Usage Performance for Random Data), Mergesort4 again proves to be the most
memory-efficient implementation, thanks to its linked list structure that eliminates the need for
temporary arrays. In contrast, Mergesortl, Mergesort2, and Mergesort3 all require additional
memory for their temporary arrays, leading to higher memory consumption. As the array size
increases, Mergesort4 consistently uses less memory, making it particularly appealing for large
datasets where memory efficiency is critical. However, all implementations exhibit linear memory
growth, complexity of O(n), which can be seen by the perfect fit of the trendline to the observed data
with an RZ of 1.0000.

Overall, Mergesort4 is the most balanced implementation for random data, offering both superior
memory efficiency and fast execution time. Mergesort1 provides a strong alternative for array-based
applications, while Mergesort2 and Mergesort3 are less suited for handling large-scale random
datasets due to their higher overhead.

Execution Time Performance for Random Data
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Figure 1: Execution Time Performance of Mergesort 1 through 4 for Random Data.
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Figure 2: Memory Usage Performance of Mergesort 1 through 4 for Random Data




Sorted Data

From Figure 3 (Execution Time Performance for Sorted Data), Mergesort4 demonstrates the fastest
execution time across all array sizes, followed by Mergesort1. Both algorithms effectively capitalize
on their designs to handle already sorted data efficiently. Mergesort2 and Mergesort3, on the other
hand, exhibit slower performance, with Mergesort3 slightly outperforming Mergesort2. The superior
performance of Mergesort4 is attributable to its pointer-based operations, which minimize
redundant operations when the data is pre-sorted. Mergesort1 also benefits from its straightforward
recursive structure, while Mergesort2’s boundary handling and Mergesort3’s iterative merging
process add extra cost. Despite these differences, all implementations adhere to the O(nlogn) time
complexity, shown by the R? very close to 1.

In Figure 4 (Memory Usage Performance for Sorted Data), Mergesort4 remains the most memory-
efficient implementation due to its linked list design, which avoids auxiliary storage. Conversely,
Mergesortl, Mergesort2, and Mergesort3 exhibit similar memory usage, as they all rely on temporary
arrays during the merge phase. While Mergesort4 consistently requires less memory, confirming its
status as the most efficient algorithm for sorted data, all implementations exhibit linear O(n) memory
growth, shown once again with the perfect R2.

Overall, for sorted data, Mergesort4 is the most efficient implementation, offering unmatched
performance in terms of both execution time and memory usage. Mergesortl also performs well,
making it a viable choice for environments where array-based operations are preferred. Meanwhile,
Mergesort2 and Mergesort3 are less suitable for handling large, sorted datasets due to their relatively
higher execution times and memory demands.

Execution Time Performance for Sorted Data
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Figure 3: Execution Time Performance of Mergesort 1 through 4 for Sorted Data
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Figure 4: Memory Usage Performance of Mergesort 1 through 4 for Sorted Data




Nearly Sorted Data

From Figure 5 (Execution Time Performance for Nearly Sorted Data), Mergesort4 again leads in terms
of execution time across all array sizes, followed by Mergesort3. Both implementations excel at
efficiently sorting data that is almost in order, using their structural advantages to minimize
unnecessary operations. Mergesort2 and Mergesort1, however, demonstrate slower performance,
with Mergesort1 slightly outperforming Mergesort2 for larger sizes. The exceptional performance of
Mergesort4 stems from its linked list-based design, which effectively handles slight disarray in the
data while the other implementations introduce additional overhead leading to slower execution
times. Despite these differences, all implementations adhere to the theoretical O(nlogn) time

complexity.

In Figure 6 (Memory Usage Performance for Nearly Sorted Data), Mergesort4 proves to be the most
memory-efficient algorithm, requiring minimal auxiliary storage due to its pointer-based operations.
In contrast, Mergesort1, Mergesort2, and Mergesort3 all rely on temporary arrays, resulting in higher
memory consumption. These algorithms all show linear O(n) memory growth, but Mergesort4

consistently uses less memory, making it ideal for scenarios where efficiency is important.

For nearly sorted data, Mergesort4 stands out as the most efficient implementation, providing faster
execution times and lower memory usage. Mergesort3 is a reliable alternative for array-based
applications, while Mergesort2 and Mergesort1 are less suited for such datasets due to their higher

overhead.
Execution Time Performance for Nearly sorted Data
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Figure 5: Execution Time Performance of Mergesort 1 through 4 for Nearly Sorted Data
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Figure 6: Memory Usage Performance of Mergesort 1 through 4 for Nearly Sorted Data




Reverse Sorted Data

From Figure 7 (Execution Time Performance for Reverse Sorted Data), Mergesort4 retains its position
as the fastest implementation, The other implementations again exhibit slower performance, with
Mergesortl slightly outperforming Mergesort2 and Mergesort3. The superior performance of
Mergesort4 is due to its pointer-based linked list structure, which reduces unnecessary operations
during the merging process. All other variants introduce additional overhead, resulting in slower
execution times. All implementations conform to the expected O(nlogn) time complexity, as reflected
in the trendlines and the high R2.

In Figure 8 (Memory Usage Performance for Reverse Sorted Data), Mergesort4 maintains its position
as the most memory-efficient implementation. Its linked list design minimizes auxiliary storage
requirements, while Mergesort1, Mergesort2, and Mergesort3 exhibit higher memory consumption
due to their reliance on temporary arrays. All algorithms scale linearly with O(n) memory growth
(R2=1) but Mergesort4 consistently requires less memory, reinforcing its efficiency.

For reverse sorted data, Mergesort4 is the most suitable choice, offering the best combination of
execution time and memory efficiency. All other implementations are less effective due to their higher
resource demands.

Execution Time Performance for Reverse Data
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Figure 7: Execution Time Performance of Mergesort 1 through 4 for Reversely Sorted Data



Memory Usage Performance for Reverse Data
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Figure 8: Memory Usage Performance of Mergesort 1 through 4 for Reversely Sorted Data

Conclusion

This project analyzed the performance of four Merge Sort implementations—Mergesortl,
Mergesort2, Mergesort3, and Mergesort4—on datasets of different sizes and configurations. The
findings highlight the strengths and weaknesses of each implementation and provide guidance on
their best use cases.

Mergesort4 consistently outperformed the other variants in both execution time and memory usage.
Its linked list-based design eliminated the need for temporary arrays, making it highly memory-
efficient. This advantage, combined with its fast execution times, made Mergesort4 the best choice for
all dataset types, particularly for large or memory-intensive tasks. Its ability to handle random, sorted,
nearly sorted, and reverse sorted datasets with minimal overhead demonstrates its versatility and
efficiency.

Mergesort1 also performed well, especially in terms of execution time. Its straightforward recursive
approach made it a strong option for array-based applications. However, its reliance on temporary
arrays led to higher memory usage compared to Mergesort4. Even so, Mergesortl provided
consistent and reliable performance, making it a solid alternative when linked lists are not used.
Mergesort3, the iterative version, was slower overall due to the additional overhead of its iterative
merging process. While it may not be the fastest implementation, it can be useful in environments
where recursion depth is a concern. Mergesort2, on the other hand, was the least efficient in both
execution time and memory usage. Its extra boundary-handling overhead during recursive calls made
it less suitable for large or complex datasets.

Dataset type also played a role in performance. Mergesort4 excelled in all cases, showing particularly
strong results for nearly sorted and reverse sorted data. Mergesort1 also handled these datasets well,
though its performance lagged slightly behind Mergesort4 for larger sizes. Both Mergesort2 and
Mergesort3 struggled with more complex datasets, further emphasizing the efficiency of Mergesort4
and Mergesort1.

le6




In terms of time complexity, all implementations adhered to the theoretical O(nlogn), as shown by
the trendlines with R2 values close to 1. Memory usage grew linearly, complexity O(n) with a perfect
R2 of 1, and Mergesort4 consistently used less memory than the other variants.

In conclusion, Mergesort4 is the best overall implementation, combining fast execution times with
low memory usage. Mergesort1 is a strong alternative for array-based applications, while Mergesort2
and Mergesort3 are less suited for large or demanding datasets. These findings demonstrate the
importance of choosing the right Merge Sort variant based on the specific requirements of the dataset
and computational environment.



References
Neapolitan, R., & Naimipour, K. (2015). Foundations of algorithms (5th ed.). Jones and Bartlett
Learning. ISBN-13: 9781284049190

McKinney, W. (2022). Python for data analysis: Data wrangling with pandas, NumPy, and Jupyter
(2nd ed.). O'Reilly Media. ISBN: 9781491957660.



Appendices

Appendix A: ython Code for Each Merge Sort Variant

Mergesort1l
# Mergesortl implementation with helper functions
def mergel(arr, temp_arr, left, mid, right):
i left # Starting index for left subarray
j = mid + 1 # Starting index for right subarray
left # Starting index to be sorted
while i <= mid and j <= right:
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
i+=1
else:
temp_arr[k] = arr[]j]
j+=1
k += 1

# Copy remaining elements of left subarray, if any
while i <= mid:

temp_arr[k] = arr[i]

i+=1

k += 1

# Copy remaining elements of right subarray, if any
while j <= right:

temp_arr[k] = arr[j]

j+=1

k += 1

# Copy the sorted subarray into original array
for i in range(left, right + 1):
arr[i] = temp_arr[i]

mergesortl(arr, temp_arr, left, right):

if left < right:
mid = (left + right) // 2
mergesortl(arr, temp_arr, left, mid)
mergesortl(arr, temp_arr, mid + 1, right)
mergel(arr, temp_arr, left, mid, right)

sort_mergel(arr):
temp_arr = [0] * len(arr)
mergesortl(arr, temp_arr, 0, len(arr) - 1)




Mergesort2
# Mergesort2 implementation with helper functions
def merge2(arr, temp_arr, left, mid, right):
i left # Starting index for left subarray
j = mid + 1 # Starting index for right subarray
left # Starting index to be sorted
while i <= mid and j <= right:
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
i+=1
else:
temp_arr[k] = arr[j]
j+=1

# Copy remaining elements of left subarray, if any
while i <= mid:

temp_arr[k] = arr[i]

i+=1

k += 1

# Copy remaining elements of right subarray, if any
while j <= right:

temp_arr[k] = arr[j]

j+=1

k += 1

# Copy the sorted subarray into original array
for i in range(left, right + 1):
arr[i] = temp_arr[i]

mergesort2(arr, temp_arr, low, high):

if low < high:
mid = (low + high) // 2
mergesort2(arr, temp_arr, low, mid)
mergesort2(arr, temp_arr, mid + 1, high)
merge2(arr, temp_arr, low, mid, high)

sort_merge2(arr):
temp_arr = [0] * len(arr)
mergesort2(arr, temp_arr, 0, len(arr) - 1)




Mergesort3
# Mergesort3 implementation (Iterative Version)
def merge3(arr, temp_arr, left, mid, right):
i left # Starting index for left subarray
j = mid + 1 # Starting index for right subarray
left # Starting index to be sorted
while i <= mid and j <= right:
if arr[i] <= arr[j]:
temp_arr[k] = arr[i]
i+=1
else:
temp_arr[k] = arr[j]
j+=1

# Copy remaining elements of left subarray, if any
while i <= mid:

temp_arr[k] = arr[i]

i+=1

k += 1

# Copy remaining elements of right subarray, if any
while j <= right:

temp_arr[k] = arr[j]

j+=1

k += 1

# Copy the sorted subarray into original array
for i in range(left, right + 1):
arr[i] = temp_arr[i]

mergesort3(arr):

n = len(arr)
temp_arr = [@] * n
size =1

# Iterative approach - Merge subarrays in bottom-up manner
while size < n:
for left in range(@, n - size, 2 * size):
mid = min(left + size - 1, n - 1)
right = min(left + 2 * size - 1, n - 1)
merge3(arr, temp_arr, left, mid, right)
size *= 2




Mergesort4
# Define a ListNode for Mergesort4 (Linked List Version)
class ListNode:
def init (self, value=0, next=None):
self.value = value
self.next = next

# Helper function to merge two sorted linked lists
def merge4(left, right):
dummy = ListNode()
tail = dummy
while left and right:
if left.value < right.value:
tail.next = left
left = left.next
else:
tail.next = right
right = right.next
tail = tail.next
tail.next = left if left else right
return dummy.next

# Recursive function for linked list mergesort
def linked_mergesort(head):
if not head or not head.next:
return head
mid = get_middle(head)
left = head
right = mid.next
mid.next = None
left = linked_mergesort(left)
right = linked_mergesort(right)
return merge4(left, right)

# Function to find the middle node of a linked list
def get middle(head):
slow = head
fast = head.next
while fast and fast.next:
slow = slow.next
fast = fast.next.next
return slow

# Convert array to linked list, apply linked_mergesort, then convert back
def mergesort4(arr):
if not arr:




return []

# Convert array to linked list
head = ListNode(arr[@])
current = head
for value in arr[1l:]:
current.next = ListNode(value)
current = current.next

# Sort the linked list

sorted_head = linked_mergesort(head)

# Convert back to array

sorted_arr = []

current = sorted_head

while current:
sorted_arr.append(current.value)
current = current.next

return sorted arr



Appendix B: Correctness Testing: Sample Outputs

Mergesortl:
Original Data: [21, 7, 9, 55, 25, 51, 3@, 80, 91, 12]
Sorted Data: [7, 9, 12, 21, 25, 3@, 51, 55, 80, 91]

Mergesort2:
Original Data: [17, 28, 47, 39, 35, 55, 38, 22, 44, 12]
Sorted Data: [12, 17, 22, 28, 35, 38, 39, 44, 47, 55]

Mergesort3:
Original Data: [77, 37, 8@, 35, 41, 7, 65, 75, 84, 20]
Sorted Data: [7, 2o, 35, 37, 41, 65, 75, 77, 80, 84]

Mergesort4:
Original Data: [29, 88, 63, 28, 14, 26, 93, 1, 2@, 78]
Sorted Data: [1, 14, 2@, 26, 28, 29, 63, 78, 88, 93]




