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Introduction 
Merge Sort is an important comparison-based sorting algorithm that works on the divide and conquer 

principle. It divides the input array into two halves, sorts each half recursively, and finally merges the 

sorted halves to produce a fully sorted array. With a time complexity of O(nlogn) Merge Sort is known 

for its efficiency which makes it significantly faster than other sorting algorithms like Bubble Sort or 

Insertion Sort, especially as the size of the dataset grows.  

The main objective of this project is to perform a comparative performance analysis of the Merge Sort 

algorithm using four different implementations. By implementing these variants in Python and 

running them on datasets of various types and sizes, this study evaluates their performance under 

different conditions. Key performance metrics, including execution time and memory usage, are 

analyzed to determine how each implementation handles diverse data structures and sizes. The 

analysis ultimately provides insights into best practices for implementing Merge Sort in specific 

scenarios, such as when memory usage is a key constraint or when the data is already sorted. 

Methodology 
The four variants of Merge Sort were implemented in Python based on pseudocode provided in 

Neapolitan et al. (2015) The implementation process involved translating the different Merge Sort 

variations written in C++ into Python syntax and ensuring that each function correctly performed the 

core operations of dividing, sorting, and merging subarrays 

To evaluate the performance of these implementations under various conditions, datasets of different 

structures and sizes were generated. Four types of data were used for testing which were random, 

sorted, almost sorted and reversely sorted data. These different configurations provided a robust 

foundation for analyzing the performance and adaptability of each Merge Sort variant. 

Implementation of Merge Sort Variants 
The four different implementations used in this analysis have distinct properties, which will be 

explained in greater detail below. 

Mergesort 1 (Recursive) 

Mergesort1 is a classic recursive implementation of the Merge Sort algorithm that follows the divide-

and-conquer approach. The array is repeatedly divided into smaller halves until each subarray 
contains only one element. Then, a merge function combines these smaller arrays in sorted order. 

This implementation uses temporary storage during merging, which helps maintain stability, 

meaning equal elements retain their original order. The pseudocode for Mergesort1 is provided in 

Appendix A/1. 

Mergesort 2 (Modified Recursive) 

Mergesort2 is another recursive implementation of Merge Sort, similar to Mergesort1. The main 

difference lies in how it handles the boundaries of the array during recursion, using explicit index 

management to split and merge the subarrays. While the underlying logic is the same as Mergesort1, 

this approach introduces minor variations that could affect performance in some cases. Temporary 

storage is also used in the merge step, preserving the algorithm’s stability. The pseudocode for 

Mergesort2 can be found in Appendix A/2. 

Mergesort 3 (Iterative Version) 

Mergesort3 is an iterative, bottom-up version of Merge Sort. Instead of using recursion, it starts with 

individual elements as sorted subarrays of size 1. The algorithm then repeatedly doubles the subarray 

size and merges them until the entire array is sorted. This method avoids the need for recursive calls, 



making it more efficient in environments where recursion depth is limited. It also provides better 

control over memory usage. The pseudocode for Mergesort3 is available in Appendix A/3. 

Mergesort 4 (Linked List Version) 

Mergesort4 is specifically designed to work with linked lists instead of arrays. It splits the linked list 

into two halves, sorts each half, and merges them back together using pointer manipulation. This 

approach is especially useful for linked lists because it avoids the need to shift elements during the 

merging step. Mergesort4 is stable and performs well when working with data stored in linked 

structures. The pseudocode for Mergesort4 is included in Appendix A/4. 

Correctness Testing 
To ensure that each Merge Sort variant produced correctly sorted output, a correctness test was 

conducted on a small dataset of 10 randomly generated integers. Each algorithm was applied to the 

dataset, and the output (Appendix B) was manually verified by comparing the sorted result against 

Python’s built-in sorted function. This verification step ensured that each implementation correctly 

sorted the data, establishing a foundation for subsequent performance testing on larger datasets. The 

verification test also served as a quick check to ensure no logical errors were present in the code 

before moving on to more extensive analysis. 

Experimental Setup 
The performance tests for this project were conducted on a computer with the following 

specifications: an Intel Core i7-9700K processor with 8 cores and a base clock speed of 3.6 GHz 

(boosting up to 4.9 GHz), 16 GB of DDR4 RAM, and the Windows 10 (64-bit) operating system. These 

specifications provided sufficient computational resources to handle datasets of varying sizes, 

ensuring accurate and reliable measurements of execution time and memory usage across the 

different Merge Sort implementations. 

To evaluate the efficiency of each Merge Sort variant, two key performance metrics were recorded: 

execution time and memory usage. Execution time was measured in milliseconds by using Python’s 

time.perf_counter_ns() function. The start and end times for each sorting operation were recorded, 

and the difference, initially calculated in nanoseconds, was converted to milliseconds for clarity. Each 

dataset configuration was tested 100 times, and the average execution time across these runs was 

computed to minimize the impact of random delays or fluctuations. Memory usage was estimated by 

calculating the memory footprint of the main data structures involved in sorting. Python’s 

sys.getsizeof() function was used to measure the size of primary arrays, including input arrays and 

temporary arrays, to approximate memory usage in bytes. This provided a reliable method to assess 

the additional memory allocation required by each implementation, reflecting the overhead 

associated with the Merge Sort process. 

To thoroughly evaluate the performance of each Merge Sort variant, test cases were generated with 

varying data structures and sizes. The datasets used for testing included arrays of sizes 10, 100, 1,000, 

10,000, 100,000, and 1,000,000. This range of sizes allowed for an analysis of how well each 

implementation scaled from small to very large datasets. Furthermore, four distinct types of data 
configurations were tested for each size. Random data consisted of arrays filled with randomly 

generated integers, simulating typical unordered datasets. Sorted data comprised arrays already 

arranged in ascending order, allowing the evaluation of how efficiently each algorithm handled pre-

sorted data. Reverse sorted data represented a worst-case scenario, with arrays arranged in 

descending order, requiring the algorithms to completely reorder the elements. Finally, nearly sorted 

data consisted of arrays that were mostly sorted but included a few random swaps, simulating real-

world datasets that might require minimal adjustments. 



Each Merge Sort variant was applied to these configurations to observe and analyze its performance 

under different conditions, providing comprehensive insights into their scalability, efficiency, and 

adaptability to various data types and sizes. 

  



Analysis and Discussion 
Random Data 
From Figure 1 (Execution Time Performance for Random Data), Mergesort1 and Mergesort4 stand 

out as the best-performing algorithms in terms of execution time, with Mergesort1 exhibiting a slight 

edge for larger datasets. Mergesort2 and Mergesort3 are comparatively slower, with Mergesort3 

being the least efficient for random data. These differences can be attributed to the design of each 

algorithm: Mergesort1 employs a simple and efficient recursive approach, while Mergesort4 uses 

pointer-based operations in its linked list implementation to achieve enhanced performance. On the 

other hand, Mergesort3 incurs extra computational costs due to its iterative structure, and 

Mergesort2 introduces additional boundary-handling cost. All implementations conform to the 

expected theoretical O(nlogn) time complexity, as illustrated by the trendlines and the R2 very close 

to 1. 

In Figure 2 (Memory Usage Performance for Random Data), Mergesort4 again proves to be the most 

memory-efficient implementation, thanks to its linked list structure that eliminates the need for 

temporary arrays. In contrast, Mergesort1, Mergesort2, and Mergesort3 all require additional 

memory for their temporary arrays, leading to higher memory consumption. As the array size 

increases, Mergesort4 consistently uses less memory, making it particularly appealing for large 

datasets where memory efficiency is critical. However, all implementations exhibit linear memory 

growth, complexity of O(n), which can be seen by the perfect fit of the trendline to the observed data 

with an R2 of 1.0000. 

Overall, Mergesort4 is the most balanced implementation for random data, offering both superior 

memory efficiency and fast execution time. Mergesort1 provides a strong alternative for array-based 

applications, while Mergesort2 and Mergesort3 are less suited for handling large-scale random 

datasets due to their higher overhead. 

Figure 1: Execution Time Performance of Mergesort 1 through 4 for Random Data. 



Figure 2: Memory Usage Performance of Mergesort 1 through 4 for Random Data 

  



Sorted Data 
From Figure 3 (Execution Time Performance for Sorted Data), Mergesort4 demonstrates the fastest 

execution time across all array sizes, followed by Mergesort1. Both algorithms effectively capitalize 

on their designs to handle already sorted data efficiently. Mergesort2 and Mergesort3, on the other 

hand, exhibit slower performance, with Mergesort3 slightly outperforming Mergesort2. The superior 

performance of Mergesort4 is attributable to its pointer-based operations, which minimize 

redundant operations when the data is pre-sorted. Mergesort1 also benefits from its straightforward 

recursive structure, while Mergesort2’s boundary handling and Mergesort3’s iterative merging 

process add extra cost. Despite these differences, all implementations adhere to the O(nlogn) time 

complexity, shown by the R2  very close to 1. 

In Figure 4 (Memory Usage Performance for Sorted Data), Mergesort4 remains the most memory-
efficient implementation due to its linked list design, which avoids auxiliary storage. Conversely, 

Mergesort1, Mergesort2, and Mergesort3 exhibit similar memory usage, as they all rely on temporary 

arrays during the merge phase. While Mergesort4 consistently requires less memory, confirming its 

status as the most efficient algorithm for sorted data, all implementations exhibit linear O(n) memory 

growth, shown once again with the perfect R2 .  

Overall, for sorted data, Mergesort4 is the most efficient implementation, offering unmatched 

performance in terms of both execution time and memory usage. Mergesort1 also performs well, 

making it a viable choice for environments where array-based operations are preferred. Meanwhile, 

Mergesort2 and Mergesort3 are less suitable for handling large, sorted datasets due to their relatively 

higher execution times and memory demands. 

Figure 3: Execution Time Performance of Mergesort 1 through 4 for Sorted Data 

 



Figure 4: Memory Usage Performance of Mergesort 1 through 4 for Sorted Data 

  



Nearly Sorted Data 
From Figure 5 (Execution Time Performance for Nearly Sorted Data), Mergesort4 again leads in terms 

of execution time across all array sizes, followed by Mergesort3. Both implementations excel at 

efficiently sorting data that is almost in order, using their structural advantages to minimize 

unnecessary operations. Mergesort2 and Mergesort1, however, demonstrate slower performance, 

with Mergesort1 slightly outperforming Mergesort2 for larger sizes. The exceptional performance of 

Mergesort4 stems from its linked list-based design, which effectively handles slight disarray in the 

data while the other implementations introduce additional overhead leading to slower execution 

times. Despite these differences, all implementations adhere to the theoretical O(nlogn) time 

complexity. 

In Figure 6 (Memory Usage Performance for Nearly Sorted Data), Mergesort4 proves to be the most 
memory-efficient algorithm, requiring minimal auxiliary storage due to its pointer-based operations. 

In contrast, Mergesort1, Mergesort2, and Mergesort3 all rely on temporary arrays, resulting in higher 

memory consumption. These algorithms all show linear O(n) memory growth, but Mergesort4 

consistently uses less memory, making it ideal for scenarios where efficiency is important. 

For nearly sorted data, Mergesort4 stands out as the most efficient implementation, providing faster 

execution times and lower memory usage. Mergesort3 is a reliable alternative for array-based 

applications, while Mergesort2 and Mergesort1 are less suited for such datasets due to their higher 

overhead. 

 
Figure 5: Execution Time Performance of Mergesort 1 through 4 for Nearly Sorted Data 



Figure 6: Memory Usage Performance of Mergesort 1 through 4 for Nearly Sorted Data 

  



Reverse Sorted Data 
From Figure 7 (Execution Time Performance for Reverse Sorted Data), Mergesort4 retains its position 

as the fastest implementation, The other implementations again exhibit slower performance, with 

Mergesort1 slightly outperforming Mergesort2 and Mergesort3. The superior performance of 

Mergesort4 is due to its pointer-based linked list structure, which reduces unnecessary operations 

during the merging process. All other variants introduce additional overhead, resulting in slower 

execution times. All implementations conform to the expected O(nlogn) time complexity, as reflected 

in the trendlines and the high R2. 

In Figure 8 (Memory Usage Performance for Reverse Sorted Data), Mergesort4 maintains its position 

as the most memory-efficient implementation. Its linked list design minimizes auxiliary storage 

requirements, while Mergesort1, Mergesort2, and Mergesort3 exhibit higher memory consumption 
due to their reliance on temporary arrays. All algorithms scale linearly with O(n) memory growth 

(R2=1) but Mergesort4 consistently requires less memory, reinforcing its efficiency. 

For reverse sorted data, Mergesort4 is the most suitable choice, offering the best combination of 

execution time and memory efficiency. All other implementations are less effective due to their higher 

resource demands. 

 

Figure 7: Execution Time Performance of Mergesort 1 through 4 for Reversely Sorted Data 



Figure 8: Memory Usage Performance of Mergesort 1 through 4 for Reversely Sorted Data 

Conclusion 
This project analyzed the performance of four Merge Sort implementations—Mergesort1, 

Mergesort2, Mergesort3, and Mergesort4—on datasets of different sizes and configurations. The 

findings highlight the strengths and weaknesses of each implementation and provide guidance on 

their best use cases. 

Mergesort4 consistently outperformed the other variants in both execution time and memory usage. 

Its linked list-based design eliminated the need for temporary arrays, making it highly memory-

efficient. This advantage, combined with its fast execution times, made Mergesort4 the best choice for 

all dataset types, particularly for large or memory-intensive tasks. Its ability to handle random, sorted, 

nearly sorted, and reverse sorted datasets with minimal overhead demonstrates its versatility and 

efficiency. 

Mergesort1 also performed well, especially in terms of execution time. Its straightforward recursive 

approach made it a strong option for array-based applications. However, its reliance on temporary 

arrays led to higher memory usage compared to Mergesort4. Even so, Mergesort1 provided 

consistent and reliable performance, making it a solid alternative when linked lists are not used. 

Mergesort3, the iterative version, was slower overall due to the additional overhead of its iterative 

merging process. While it may not be the fastest implementation, it can be useful in environments 

where recursion depth is a concern. Mergesort2, on the other hand, was the least efficient in both 

execution time and memory usage. Its extra boundary-handling overhead during recursive calls made 

it less suitable for large or complex datasets. 

Dataset type also played a role in performance. Mergesort4 excelled in all cases, showing particularly 

strong results for nearly sorted and reverse sorted data. Mergesort1 also handled these datasets well, 

though its performance lagged slightly behind Mergesort4 for larger sizes. Both Mergesort2 and 

Mergesort3 struggled with more complex datasets, further emphasizing the efficiency of Mergesort4 

and Mergesort1. 



In terms of time complexity, all implementations adhered to the theoretical O(nlogn), as shown by 

the trendlines with R2 values close to 1. Memory usage grew linearly, complexity O(n) with a perfect 

R2 of 1, and Mergesort4 consistently used less memory than the other variants. 

In conclusion, Mergesort4 is the best overall implementation, combining fast execution times with 

low memory usage. Mergesort1 is a strong alternative for array-based applications, while Mergesort2 

and Mergesort3 are less suited for large or demanding datasets. These findings demonstrate the 

importance of choosing the right Merge Sort variant based on the specific requirements of the dataset 

and computational environment. 
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Appendices 
Appendix A: ython Code for Each Merge Sort Variant 

Mergesort1 
# Mergesort1 implementation with helper functions 

def merge1(arr, temp_arr, left, mid, right): 

    i = left    # Starting index for left subarray 

    j = mid + 1 # Starting index for right subarray 

    k = left    # Starting index to be sorted 

    while i <= mid and j <= right: 

        if arr[i] <= arr[j]: 

            temp_arr[k] = arr[i] 

            i += 1 

        else: 

            temp_arr[k] = arr[j] 

            j += 1 

        k += 1 

 

    # Copy remaining elements of left subarray, if any 

    while i <= mid: 

        temp_arr[k] = arr[i] 

        i += 1 

        k += 1 

 

    # Copy remaining elements of right subarray, if any 

    while j <= right: 

        temp_arr[k] = arr[j] 

        j += 1 

        k += 1 

 

    # Copy the sorted subarray into original array 

    for i in range(left, right + 1): 

        arr[i] = temp_arr[i] 

 

def mergesort1(arr, temp_arr, left, right): 

    if left < right: 

        mid = (left + right) // 2 

        mergesort1(arr, temp_arr, left, mid) 

        mergesort1(arr, temp_arr, mid + 1, right) 

        merge1(arr, temp_arr, left, mid, right) 

 

def sort_merge1(arr): 

    temp_arr = [0] * len(arr) 

    mergesort1(arr, temp_arr, 0, len(arr) - 1) 

  



Mergesort2 
# Mergesort2 implementation with helper functions 

def merge2(arr, temp_arr, left, mid, right): 

    i = left    # Starting index for left subarray 

    j = mid + 1 # Starting index for right subarray 

    k = left    # Starting index to be sorted 

    while i <= mid and j <= right: 

        if arr[i] <= arr[j]: 

            temp_arr[k] = arr[i] 

            i += 1 

        else: 

            temp_arr[k] = arr[j] 

            j += 1 

        k += 1 

 

    # Copy remaining elements of left subarray, if any 

    while i <= mid: 

        temp_arr[k] = arr[i] 

        i += 1 

        k += 1 

 

    # Copy remaining elements of right subarray, if any 

    while j <= right: 

        temp_arr[k] = arr[j] 

        j += 1 

        k += 1 

 

    # Copy the sorted subarray into original array 

    for i in range(left, right + 1): 

        arr[i] = temp_arr[i] 

 

def mergesort2(arr, temp_arr, low, high): 

    if low < high: 

        mid = (low + high) // 2 

        mergesort2(arr, temp_arr, low, mid) 

        mergesort2(arr, temp_arr, mid + 1, high) 

        merge2(arr, temp_arr, low, mid, high) 

 

def sort_merge2(arr): 

    temp_arr = [0] * len(arr) 

    mergesort2(arr, temp_arr, 0, len(arr) - 1) 

 

 

  



Mergesort3 
# Mergesort3 implementation (Iterative Version) 

def merge3(arr, temp_arr, left, mid, right): 

    i = left    # Starting index for left subarray 

    j = mid + 1 # Starting index for right subarray 

    k = left    # Starting index to be sorted 

    while i <= mid and j <= right: 

        if arr[i] <= arr[j]: 

            temp_arr[k] = arr[i] 

            i += 1 

        else: 

            temp_arr[k] = arr[j] 

            j += 1 

        k += 1 

 

    # Copy remaining elements of left subarray, if any 

    while i <= mid: 

        temp_arr[k] = arr[i] 

        i += 1 

        k += 1 

 

    # Copy remaining elements of right subarray, if any 

    while j <= right: 

        temp_arr[k] = arr[j] 

        j += 1 

        k += 1 

 

    # Copy the sorted subarray into original array 

    for i in range(left, right + 1): 

        arr[i] = temp_arr[i] 

 

def mergesort3(arr): 

    n = len(arr) 

    temp_arr = [0] * n 

    size = 1 

 

    # Iterative approach - Merge subarrays in bottom-up manner 

    while size < n: 

        for left in range(0, n - size, 2 * size): 

            mid = min(left + size - 1, n - 1) 

            right = min(left + 2 * size - 1, n - 1) 

            merge3(arr, temp_arr, left, mid, right) 

        size *= 2 
 

  



Mergesort4 
# Define a ListNode for Mergesort4 (Linked List Version) 

class ListNode: 

    def __init__(self, value=0, next=None): 

        self.value = value 

        self.next = next 

 

# Helper function to merge two sorted linked lists 

def merge4(left, right): 

    dummy = ListNode() 

    tail = dummy 

    while left and right: 

        if left.value < right.value: 

            tail.next = left 

            left = left.next 

        else: 

            tail.next = right 

            right = right.next 

        tail = tail.next 

    tail.next = left if left else right 

    return dummy.next 

 

# Recursive function for linked list mergesort 

def linked_mergesort(head): 

    if not head or not head.next: 

        return head 

    mid = get_middle(head) 

    left = head 

    right = mid.next 

    mid.next = None 

    left = linked_mergesort(left) 

    right = linked_mergesort(right) 

    return merge4(left, right) 

 

# Function to find the middle node of a linked list 

def get_middle(head): 

    slow = head 

    fast = head.next 

    while fast and fast.next: 

        slow = slow.next 

        fast = fast.next.next 

    return slow 

 

# Convert array to linked list, apply linked_mergesort, then convert back 

def mergesort4(arr): 

    if not arr: 



        return [] 

 

    # Convert array to linked list 

    head = ListNode(arr[0]) 

    current = head 

    for value in arr[1:]: 

        current.next = ListNode(value) 

        current = current.next 

 

    # Sort the linked list 

    sorted_head = linked_mergesort(head) 

 

    # Convert back to array 

    sorted_arr = [] 

    current = sorted_head 

    while current: 

        sorted_arr.append(current.value) 

        current = current.next 

 

    return sorted_arr 

 

 

  



Appendix B: Correctness Testing: Sample Outputs 
 

 


